Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this study, the structure and transport properties of two polymorphs, nanoparticles and nanorods, of the iron(II) triazole [Fe(Htrz)2(trz)](BF4) spin crossover complex were compared. Conductive atomic force microscopy was used to map the electrical conductivity of individual nanoparticles and nanorods. The [Fe(Htrz)2(trz)](BF4) nanorods showed significantly higher conductivity compared to nanoparticles. This difference in electrical conductivity is partially associated to the different Fe–N bond lengths in each of the polymorphs, with an inverse relationship between Fe–N bond length and conductivity. Transport measurements were done on the nanorods for both high spin (at 380 K) and low spin (at 320 K) states under dark and illuminated conditions. The conductance is highest for the low spin state under dark conditions. In illumination, the conductance change is much diminished.more » « less
-
Free, publicly-accessible full text available March 18, 2026
-
This paper describes the 3D printing of a ternary composite of polydimethylsiloxane (PDMS) and nanoparticles of iron oxide and barium titanate. The composite was printed using a commercially available 3D printer. Thermal curing of the composite during printing allowed for overall low process times of a few minutes. Scanning electron microscopy indicated uniform composite layers. The resulting composite films showed ferromagnetic behaviour, and applicability in magnetic actuation and piezoelectric energy harvesting.more » « less
-
Abstract Flexible nanocomposite films, with cobalt ferrite nanoparticles (CFN) as the ferromagnetic component and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) copolymer as the ferroelectric matrix, were fabricated using a blade coating technique. Nanocomposite films were prepared using a two-step process; the first process involves the synthesis of cobalt ferrite (CoFe2O4) nanoparticles using a sonochemical method, and then incorporation of various weight percentages (0, 2.5, 5, and 10%) of cobalt ferrite nanoparticles into the PVDF-TrFE to form nanocomposites. The ferroelectric polarβphase of PVDF-TrFE was confirmed by x-ray diffraction (XRD). Thermal studies of films showed notable improvement in the thermal properties of the nanocomposite films with the incorporation of nanoparticles. The ferroelectric properties of the pure polymer/composite films were studied, showing a significant improvement of maximum polarization upon 5wt% CFN loading in PVDF-TrFE composite films compared to the PVDF-TrFE film. The magnetic properties of as-synthesized CFN and the polymer nanocomposites were studied, showing a magnetic saturation of 53.7 emu g−1at room temperature, while 10% cobalt ferrite-(PVDF-TrFE) nanocomposite shows 27.6 emu/g. We also describe a process for fabricating high optical quality pure PVDF-TrFE and pinhole-free nanocomposite films. Finally, the mechanical studies revealed that the mechanical strength of the films increases up to 5 wt% loading of the nanoparticles in the copolymer matrix and then decreases. This signifies that the obtained films could be suited for flexible electronics.more » « less
An official website of the United States government
